Primal-Attention: Self-attention through Asymmetric Kernel SVD in Primal Representation

Yingyi Chen*, Qinghua Tao*, Francesco Tonin, Johan A.K. Suykens

Summary

Represent and optimize self-attention through asymmetric Kernel Singular Value Decomposition (KSVD):

- A primal-dual representation of self-attention in Transformers is formulated;
- A new attention mechanism named Primal-Attention based on primal representation of KSVD is proposed;
- A KSVD optimization designed for Primal-Attention is implemented.

Canonical self-attention is with Asymmetric Kernel

- Attention matrix in self-attention is asymmetric

- For asymmetric kernel, the kernel trick from Reproducing Kernel Banach Spaces (RKBS) with $\kappa(\cdot, \cdot): \mathcal{X} \times Z \rightarrow \mathbb{R}$ can be defined by the inner product of two feature maps from $\mathcal{B}_{X}, \mathcal{B}_{Z}$

$$
\kappa(\boldsymbol{x}, \boldsymbol{z})=\left\langle\phi_{x}(\boldsymbol{x}), \phi_{z}(\mathbf{z})\right\rangle, \forall \boldsymbol{x} \in \mathcal{X}, \phi_{x} \in \mathcal{B}_{x}, \mathbf{z} \in \mathcal{Z}, \phi_{z} \in \mathcal{B}_{z}
$$

SVD and Shifted Eigenvalue Problem

- SVD factorizes a given matrix $A \in \mathbb{R}^{N \times M}$ by two sets of orthonormal eigenbases
left singular vectors right singular vectors

$$
A=U \Sigma V^{\top}, \Sigma=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}, U \in \mathbb{R}^{N \times s}, \mathrm{~V} \in \mathbb{R}^{M \times s}
$$

- Decomposition theorem (Lanczos, 1958): Any non-zero matrix $A \in \mathbb{R}^{N \times M}$ can be written as $A=\widetilde{U} \widetilde{\Sigma} \widetilde{V}^{\top}$, where $\widetilde{U} \in \mathbb{R}^{N \times s}, \tilde{V} \in$ $\mathbb{R}^{M \times s}, \tilde{\Sigma} \in \mathbb{R}^{s \times s}$ are defined by the shifted eigenvalue problem:

$$
\begin{aligned}
A \tilde{V} & =\widetilde{U} \tilde{\Sigma}, \\
A^{\top} \widetilde{U} & =\tilde{V} \tilde{\Sigma},
\end{aligned}
$$

$\widetilde{U}^{\top} \widetilde{U}=I_{s}, \widetilde{V}^{\top} \tilde{V}=I_{s}, \tilde{\Sigma}$ is diagonal with positive numbers.

Primal-dual Representation of Self-attention with KSVD

Primal problem with KSVD for self-attention: we extend SVD under Least Squares Support Vector Machines (Suykens et al. 2002) framework (Suykens, 2016) to a nonlinear version

$$
\begin{aligned}
& \max _{W_{e}, W_{r}, \boldsymbol{e}_{i}, \boldsymbol{r}_{j}} J=\frac{1}{2} \sum_{i=1}^{N} \boldsymbol{e}_{i}^{\top} \Lambda \boldsymbol{e}_{i}+\frac{1}{2} \sum_{j=1}^{N} \boldsymbol{r}_{j}^{\top} \Lambda \boldsymbol{r}_{j}-\operatorname{Tr}\left(W_{e}^{\top} W_{r}\right) \\
& \text { s.t. } \boldsymbol{e}_{i}=\left(f(X)^{\top} W_{e}\right)^{\top} \phi_{q}\left(\boldsymbol{x}_{i}\right), \quad i=1, \ldots, N, \\
& \boldsymbol{r}_{j}=\left(f(X)^{\top} W_{r}\right)^{\top} \phi_{k}\left(\boldsymbol{x}_{j}\right), \quad j=1, \ldots, N,
\end{aligned}
$$

Data-dependent projection weights	Feature maps related to queries and keys	Asymmetric attention kernel $/$ Regu. coeff.	Projection scores w.r.t. queries, keys
$f(X)^{\top} W_{e}=: W_{e \mid X} \in \mathbb{R}^{p \times s}$	$\phi_{q}(\cdot): \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$	$K:=\left[\left\langle\phi_{q}\left(\boldsymbol{x}_{i}\right), \phi_{k}\left(\boldsymbol{x}_{j}\right)\right\rangle\right]$	$\boldsymbol{e}_{i}:=W_{e \mid X}^{\top} \phi_{q}\left(\boldsymbol{x}_{i}\right)$
$f(X)^{\top} W_{r}=: W_{r \mid X} \in \mathbb{R}^{p \times s}$	$\phi_{k}(\cdot): \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$	$\Lambda \in \mathbb{R}^{s \times s}>0$ diagonal	$\boldsymbol{r}_{j}:=W_{r \mid X}^{\top} \phi_{k}\left(\boldsymbol{x}_{j}\right)$

Dual problem with KSVD for self-attention: with Lagrangian duality and KKT conditions, the dual problem of above leads to the shifted eigenvalue problem

$$
\begin{aligned}
K H_{r} & =H_{e} \Sigma, \\
K^{\top} H_{e} & =H_{r} \Sigma,
\end{aligned}
$$

$H_{e}=\left[\boldsymbol{h}_{e_{1}}, \ldots, \boldsymbol{h}_{e_{N}}\right]^{\top} \in \mathbb{R}^{N \times s}, H_{r}=\left[\boldsymbol{h}_{r_{1}}, \ldots, \boldsymbol{h}_{r_{N}}\right]^{\top} \in \mathbb{R}^{N \times s}$ are dual variables serving as left and right singular vectors.
Primal-dual representation of KSVD in self-attention:
Primal: $\left\{\begin{array}{l}e(\boldsymbol{x})=W_{e \mid X}^{\top} \phi_{q}(\boldsymbol{x}) \\ r(\boldsymbol{x})=W_{r \mid X}^{\top} \phi_{k}(\boldsymbol{x})\end{array}, \quad\right.$ Dual: $\left\{\begin{array}{l}\left\{\begin{array}{l}e(\boldsymbol{x})=\sum_{j=1}^{N} \boldsymbol{h}_{r_{j}} \kappa\left(\boldsymbol{x}, \boldsymbol{x}_{j}\right) \\ \hdashline r(\boldsymbol{x})=\sum_{i=1}^{N} \boldsymbol{h}_{e_{i}} \kappa\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right)\end{array} . . . ~\right.\end{array}\right.$

Primal-Attention

Modelling: leveraging primal representation of KSVD with ϕ_{q}, ϕ_{k}

$$
\boldsymbol{o}_{i}:=\left[\boldsymbol{e}_{i} ; \boldsymbol{r}_{i}\right]=\left[W_{e \mid X}^{\top} \phi_{q}\left(\boldsymbol{x}_{i}\right) ; W_{r \mid X}^{\top} \phi_{k}\left(\boldsymbol{x}_{i}\right)\right]
$$

experimentally, $\phi_{q}(\boldsymbol{x}):=q(\boldsymbol{x}) /\|q(\boldsymbol{x})\|_{2}, \phi_{k}(\boldsymbol{x}):=k(\boldsymbol{x}) /\|k(\boldsymbol{x})\|_{2}$, reducing time complexity from $\mathcal{O}\left(N^{2} d_{v}\right)$ to $\mathcal{O}(N p s)$.

Optimization: stationary solutions of KSVD for each head can be obtained by a zero-value of the primal objective $J=0$

$$
\begin{aligned}
J\left(W_{e}, W_{r}, \Lambda\right)= & \frac{1}{2} \sum_{i=1}^{N}\left\|\left(W_{e \mid X} \Lambda^{1 / 2}\right)^{\top} \phi_{q}\left(\boldsymbol{x}_{i}\right)\right\|_{2}^{2}+ \\
& \frac{1}{2} \sum_{j=1}^{N}\left\|\left(W_{r \mid X} \Lambda^{1 / 2}\right)^{\top} \phi_{k}\left(\boldsymbol{x}_{j}\right)\right\|_{2}^{2}-\operatorname{Tr}\left(W_{e}^{\top} W_{r}\right)
\end{aligned}
$$

The objective of Primal-Attention is

$$
\min L_{\mathrm{CE}}+\eta \sum_{l} J_{l}^{2}
$$

Σ_{l} denotes additive objectives J_{l} of all Primal-attention blocks, where J_{l} is implemented as the mean of all heads.

Numerical Experiments

- Enhanced low-rank property: spectrum analysis of the selfattention matrix on ImageNet-1K

- Enhanced accuracy \& efficiency: Long-Range Arena Benchmark

$\begin{gathered} \text { Dataset } \\ \text { (seq. length) } \end{gathered}$	$\begin{array}{\|l\|l} \hline \begin{array}{l} \text { Trans- } \\ \text { former } \end{array} \end{array}$	$\begin{gathered} \text { Re- } \\ \text { former } \end{gathered}$	$\begin{gathered} \text { per- } \\ \text { former } \end{gathered}$	$\begin{gathered} \text { Lin- } \\ \text { former } \end{gathered}$	$\begin{array}{\|c} \text { Nystrim. } \\ \text { former } \end{array}$	$\begin{aligned} & \text { Long- } \\ & \text { former } \end{aligned}$	yoso-E	Primal	$\begin{aligned} & \text { Primal } \\ & \text { +Trans. } \end{aligned}$
Listops (2k)	37.1	19.1	18.8	37.3	37.2	37.2	37.3	${ }^{37.3}$	37.3
Text (4k)	65.0	64.9	63.8	55.9	65.5	64.6	64.7	61.2	65.4
Retrieval (4K)	79.4	78.6	78.6	79.4	79.6	81.0	81.2	77.8	81.0
Image (1K)	38.2	43.3	37.1	37.8	41.6	39.1	39.8	43.0	43.9
Pathinder (1K)	74.2	69.4	69.9	67.6	70.9	73.0	72.9	68.3	74.3

Model			Tmelstiksteen			Memov((6)				
	Listops	Teet	Retrieva	${ }^{\text {Image }}$	Shinde	Listos			lmage	Sathinde
Insorme		(6948)		$\underbrace{334.5} \begin{aligned} & \text { (1) }\end{aligned}$	$\xrightarrow{\text { 200.5 }}$	${ }_{\text {che }}^{\text {S }}$ (1x)	$\underbrace{2124}_{(2124}$	${ }_{\substack{18,72 \\(1 \times)^{1}}}^{(5)}$		
Nsystromiomer	cisy (288) (28)	${ }_{\substack{120.9 \\(5,7 x)}}^{10.0}$	$\substack{\text { 23, } \\(5,5 \times 1}$				${ }_{\substack{1.69 \\(12.6 \times)}}^{1020}$		(1.93)	
Lintormer	(63.4	116.5	${ }^{26,2}$	158.5	2040	${ }^{1.73}$	${ }^{3.45}$	${ }^{6,33}$	${ }^{3.45}$	3.45
	(${ }_{\text {(238) }}^{(238)}$	${ }_{(4.4 \times)}^{\text {157, }}$		${ }_{(12 \times 8)}^{\text {(11.4) }}$		${ }_{(8,3 \times 1}^{1.67}$			(138)	
Reformer		$\xrightarrow{168.5}$		$c223(15x)$		(1.64)		(6.09	(3.29)	(1.29)
Primal.trans.	$\xrightarrow{113.4}$			${ }_{\text {a }}^{212.12 .1}$		${ }_{\text {¢ }}^{5.24}$		${ }_{\text {coin }}^{18.59}$	${ }_{\text {(12x) }}^{5.35}$	
Primal.	56.5	${ }^{93.6}$	${ }^{125.3}$	112.9	${ }^{1880.0}$	0.69	${ }^{1.37}$	2.99	${ }^{1.39}$	
						(1,9)	(115.5)	(6.33)	(a, 4)	(13.9)

Other benchmarks including UEA time series classification, D4RL reinforcement learning, ImageNet-100, ImageNet-1K, WikiText103 and more ablation studies can be found in the paper.

Paper:	Code:	References:
		Lanczos. "Linear systems in self-adjoint form." The American Mathematical Monthly, 1958.
1ㅜN	+	Suykens et al. Least Squares Support Vector Machines. World scientific, 2002.
arXiv:2305.197 98	github.com/yingyiche n-cyy/PrimalAttention	Suykens. "SVD revisited: A new variational principle, compatible feature maps and nonlinear extensions." Applied and Computational Harmonic Analysis, 2016.

