Primal-Attention: Self-attention through Asymmetric Kernel SVD in Primal Representation

Yingyi Chen*, Qinghua Tao*, Francesco Tonin, Johan A.K. Suykens ESAT-STADIUS, KU Leuven, Belgium *Equal contribution

Summary

Represent and optimize self-attention through *asymmetric Kernel* Singular Value Decomposition (KSVD):

- A primal-dual representation of self-attention in Transformers is formulated;
- A new attention mechanism named Primal-Attention based on primal representation of KSVD is proposed;
- A KSVD optimization designed for Primal-Attention is implemented.

Canonical self-attention is with Asymmetric Kernel

• Attention matrix in self-attention is asymmetric

For asymmetric kernel, the kernel trick from Reproducing *Kernel Banach Spaces* (RKBS) with $\kappa(\cdot, \cdot): \mathcal{X} \times \mathcal{Z} \to \mathbb{R}$ can be defined by the inner product of two feature maps from $\mathcal{B}_{\chi}, \mathcal{B}_{Z}$:

 $\kappa(\mathbf{x}, \mathbf{z}) = \langle \phi_{\mathbf{x}}(\mathbf{x}), \phi_{\mathbf{z}}(\mathbf{z}) \rangle, \ \forall \mathbf{x} \in \mathcal{X}, \phi_{\mathbf{x}} \in \mathcal{B}_{\mathcal{X}}, \mathbf{z} \in \mathcal{Z}, \phi_{\mathbf{z}} \in \mathcal{B}_{\mathcal{Z}}.$

SVD and **Shifted Eigenvalue Problem**

- SVD factorizes a given matrix $A \in \mathbb{R}^{N \times M}$ by two sets of orthonormal eigenbases:
 - $A = U\Sigma V^{\top}, \Sigma = \text{diag}\{\sigma_1, \dots, \sigma_s\}, U \in \mathbb{R}^{N \times s}, V \in \mathbb{R}^{M \times s}$
- Decomposition theorem (Lanczos, 1958): Any non-zero matrix $A \in \mathbb{R}^{N \times M}$ can be written as $A = \widetilde{U} \widetilde{\Sigma} \widetilde{V}^{\top}$, where $\widetilde{U} \in \mathbb{R}^{N \times s}$, $\widetilde{V} \in \mathbb{R}^{N \times s}$ $\mathbb{R}^{M \times s}$, $\tilde{\Sigma} \in \mathbb{R}^{s \times s}$ are defined by the shifted eigenvalue problem:

$$A\widetilde{V} = \widetilde{U}\widetilde{\Sigma}$$
 ,
 $A^{\mathsf{T}}\widetilde{U} = \widetilde{V}\widetilde{\Sigma}$,

 $\widetilde{U}^{\top}\widetilde{U} = I_{s}, \ \widetilde{V}^{\top}\widetilde{V} = I_{s}, \ \widetilde{\Sigma}$ is diagonal with positive numbers.

Primal-dual Representation of Self-attention with KSVD

left singular vectors right singular vectors

Primal problem with KSVD for self-a
under Least Squares Support Vecto
2002) framework (Suykens, 2016) to

$\max_{W_e, W_r, \boldsymbol{e}_i, \boldsymbol{r}_j} J = \frac{1}{2} \sum_{i=1}^N \boldsymbol{e}_i^{T} \Lambda \boldsymbol{e}_i + \frac{1}{2} \sum_{j=1}^N \boldsymbol{e}_j^{T} \Lambda \boldsymbol{e}_j$, =1
s.t. $\boldsymbol{e}_i = (f(X)^\top W_e)^\top \phi_q$	(x
$\boldsymbol{r}_j = (f(X)^\top W_r)^\top \phi_k$	(x

Data-dependent projection weights	Feature maps related to queries and keys	Asymmetric attention kernel / Regu. coeff.	Projection scores w.r.t. queries, keys
$f(X)^\top W_e =: W_{e X} \in \mathbb{R}^{p \times s}$	$\phi_q(\cdot) \colon \mathbb{R}^d \to \mathbb{R}^p$	$K := [\langle \phi_q(\boldsymbol{x}_i), \phi_k(\boldsymbol{x}_j) \rangle]$	$\boldsymbol{e}_i \coloneqq W_{e X}^{T} \phi_q(\boldsymbol{x}_i)$
$f(X)^\top W_r =: W_{r X} \in \mathbb{R}^{p \times s}$	$\phi_k(\cdot) \colon \mathbb{R}^d \to \mathbb{R}^p$	$\Lambda \in \mathbb{R}^{s \times s} \succ 0 \text{ diagonal}$	$\boldsymbol{r}_j \coloneqq W_{r X}^{T} \phi_k(\boldsymbol{x}_j)$

Dual problem with KSVD for self-attention: with Lagrangian duality and KKT conditions, the dual problem of above leads to the shifted eigenvalue problem

> $KH_r = H_e \Sigma$, $K^{\mathsf{T}}H_e = H_r\Sigma$,

- $H_e = \begin{bmatrix} \boldsymbol{h}_{e_1}, \dots, \boldsymbol{h}_{e_N} \end{bmatrix}^{\mathsf{T}} \in \mathbb{R}^{N \times s}, H_r = \begin{bmatrix} \boldsymbol{h}_{r_1}, \dots, \boldsymbol{h}_{r_N} \end{bmatrix}^{\mathsf{T}} \in \mathbb{R}^{N \times s}$ are dual variables serving as *left* and *right* singular vectors.
- *Primal-dual representation* of KSVD in self-attention:

Primal:
$$\begin{cases} e(\boldsymbol{x}) = W_{e|X}^{\top} \phi_q(\boldsymbol{x}) \\ r(\boldsymbol{x}) = W_{r|X}^{\top} \phi_k(\boldsymbol{x})' \end{cases}$$
Dual:
$$\begin{cases} e(\boldsymbol{x}) = \sum_{j=1}^N \boldsymbol{h}_{r_j} \kappa(\boldsymbol{x}, \boldsymbol{x}_j) \\ r(\boldsymbol{x}) = \sum_{i=1}^N \boldsymbol{h}_{e_i} \kappa(\boldsymbol{x}_i, \boldsymbol{x}) \end{cases}$$

Primal-Attention

Modelling: leveraging primal representation of KSVD with ϕ_a , ϕ_k

 $\boldsymbol{o}_i \coloneqq [\boldsymbol{e}_i; \boldsymbol{r}_i] = [W_{e|X}^\top \phi_q(\boldsymbol{x}_i); W_{r|X}^\top \phi_k(\boldsymbol{x}_i)],$

experimentally, $\phi_q(\mathbf{x}) \coloneqq q(\mathbf{x}) / ||q(\mathbf{x})||_2, \phi_k(\mathbf{x}) \coloneqq k(\mathbf{x}) / ||k(\mathbf{x})||_2,$ reducing time complexity from $\mathcal{O}(N^2 d_{\nu})$ to $\mathcal{O}(Nps)$.

Optimization: stationary solutions of KSVD for each head can be obtained by a zero-value of the primal objective J = 0 $\phi_q(\boldsymbol{x}_i)$ $-\operatorname{Tr}(W_e^{\top}W_r).$

$$J(W_{e}, W_{r}, \Lambda) = \frac{1}{2} \sum_{i=1}^{N} \left\| \left(W_{e|X} \Lambda^{1/2} \right)^{\mathsf{T}} \frac{1}{2} \sum_{j=1}^{N} \left\| \left(W_{r|X} \Lambda^{1/2} \right)^{\mathsf{T}} \right\|$$

European Research Council Established by the European Commission

attention: we extend SVD or Machines (Suykens et al., o a nonlinear version

$$r_j^{\mathsf{T}} \Lambda r_j - \mathrm{Tr}(W_e^{\mathsf{T}} W_r)$$

 x_i), i = 1, ..., N, $(x_i), \quad j = 1, ..., N,$

The *objective* of Primal-Attention is

 Σ_l denotes additive objectives J_l of all Primal-attention blocks, where J_l is implemented as the mean of all heads.

Numerical Experiments

Enhanced low-rank property: spectrum analysis of the selfattention matrix on ImageNet-1K

Enhanced accuracy & efficiency: Long-Range Arena Benchmark

Dataset (seq. length)	Trans- former	Re- former	Per- former	Lin- former	Nyström- former	Long- former	YOSO-E	Primal.	Primal. +Trans.
ListOps (2K)	37.1	19.1	18.8	37.3	37.2	37.2	37.3	37.3	37.3
Text (4K)	65.0	64.9	63.8	55.9	65.5	64.6	64.7	61.2	65.4
Retrieval (4K)	79.4	78.6	78.6	79.4	79.6	81.0	81.2	77.8	81.0
Image (1K)	38.2	43.3	37.1	37.8	41.6	39.1	39.8	43.0	43.9
Pathfinder (1K)	74.2	69.4	69.9	67.6	70.9	73.0	72.9	68.3	74.3
Avg. Acc. (%)	58.8	55.1	53.6	55.6	59.0	59.0	59.2	57.5	60.4

Model	Time (s/1K-steps)				Memory (GB)					
	ListOps	Text	Retrieval	Image	Pathfinder	ListOps	Text	Retrieval	Image	Pathfinder
Transformer	194.5	694.8	1333.7	334.5	405.5	5.50	21.24	18.72	5.88	5.88
	(1×)	(1×)	(1×)	(1×)	(1×)	(1×)	(1×)	(1×)	(1×)	(1×)
Nyströmformer	68.4	120.9	235.5	179.5	221.2	0.89	1.69	3.29	1.93	1.93
	(2.8×)	(5.7×)	(5.7×)	(1.9×)	(1.8×)	(6.2×)	(12.6×)	(5.7×)	(3.0×)	(3.0×)
Linformer	63.4	116.5	226.2	158.5	204.0	1.73	3.45	6.33	3.45	3.45
	(3.1×)	(6.0×)	(5.9×)	(2.1×)	(2.0×)	(3.2×)	(6.2×)	(3.0×)	(1.7×)	(1.7×)
Performer	83.8	157.5	320.6	211.4	278.1	1.67	3.34	6.28	3.34	3.34
	(2.3×)	(4.4×)	(4.2×)	(1.6×)	(1.5×)	(3.3×)	(6.4×)	(3.0×)	(1.8×)	(1.8×)
Reformer	87.0	168.5	339.9	223.7	286.7	1.64	3.29	6.09	3.29	3.29
	(2.2×)	(4.1×)	(3.9×)	(1.5×)	(1.4×)	(3.3×)	(6.5×)	(3.1×)	(1.8×)	(1.8×)
Primal.+Trans.	113.4	367.6	546.5	212.1	263.2	5.24	20.7	18.59	5.35	5.35
	(1.7×)	(1.9×)	(2.4×)	(1.6×)	(1.5×)	(1.1×)	(1.0×)	(1.0×)	(1.1×)	(1.1×)
Primal.	56.5	93.6	185.3	142.9	180.0	0.69	1.37	2.99	1.39	1.52
	(3.4×)	(7.4×)	(7.2×)	(2.3×)	(2.3×)	(7.9×)	(15.5×)	(6.3×)	(4.2×)	(3.9×)

arXiv:2305.197

github.com/yingyiche n-cyy/PrimalAttentior

min $L_{\rm CE} + \eta \sum J_l^2$,

Other benchmarks including UEA time series classification, D4RL reinforcement learning, ImageNet-100, ImageNet-1K, WikiText-103 and more ablation studies can be found in the paper.

References:

Lanczos. "Linear systems in self-adjoint form." The American Mathematical Monthly, 1958. Suykens et al. Least Squares Support Vector Machines. World scientific, 2002. Suykens. "SVD revisited: A new variational principle, compatible feature maps and nonlinear extensions." Applied and Computational Harmonic Analysis, 2016.

37th Conference on Neural Information Processing Systems, Dec. 2023