Self-Attention through Kernel-Eigen Pair Sparse Variational Gaussian Processes

 SCO Tonin² Johan A.K. Suykens¹

Kariational Process

Summary

Building uncertainty-aware self-attention in Transformers with

KU LEUVEN

- Large capacities of Transformers can lead to overconfide risking of safety-critical issues;
- Bayesian inference, a good uncertainty quantification too overconfidence by providing predictions with confidence
- We propose a new Bayesian self-attention based on Sparse Variation *Gaussian Processes* (SVGP);
- The time-complexity of our Bayesian self-attention is furth $\mathcal{O}(s)$, $s < N$ with *Kernel Singular Value Decomposition* (K

Prior: \boldsymbol{f} $\boldsymbol{\mathcal{u}}$ $\sim \mathcal{N}$ (0, K_{XX} K_{XZ} K_{ZX} K_{ZZ} Posterior: $q(f) = \mathcal{N}(K_{XZ}K_{ZZ}^{-1}m_u, K_{XX} - K_{XZ}K_{ZZ}^{-1}(K_{ZZ} - S_{uu})K_{ZZ}^{-1})$

Posterior is based on $q(f) = \int p(f|u)q(u)du$ with variation

 $q(u) = \mathcal{N}(m_u, S_{uu}), m_u \in \mathbb{R}^s, S_{uu} \in \mathbb{R}^{s \times s}.$

- Evidence lower-bound: $\mathcal{L}_{ELBO} = \mathbb{E}_{q(f)} [\log p(y|f)] KL(q($
- Time complexity of computing posterior is $O(s^3)$, $s < N$.

SVGP with Kernel-Eigen Features reduces time complexity inducing variables as the eigenvectors of K_{xx} , i.e., $\boldsymbol{u}[i] \coloneqq \boldsymbol{v}_i$:

Background I: SVGP

Gaussian Process (GP) represents real-valued function $f(\cdot)$ Gaussian distributions based on $\kappa(\cdot,\cdot)$: $\mathcal{X}\times\mathcal{X}\rightarrow\mathbb{R}$, **positive-d**

Prior: $f(\cdot) \sim \mathcal{GP}(0, \kappa(\cdot, \cdot)) \Rightarrow f \sim \mathcal{N}(0, K_{XX})$, $K_{XX} := [\kappa(\mathbf{x}_i, \cdot) \cdot]$

Self-Attention corresponds to Asymmetric Kernel: let $\{x_i\}$ inputs, then the queries, keys and values are

 $q(x_i) = W_a x_i, \ \ k(x_i) = W_k x_i, \ \ v(x_i) = W_k$ The canonical self-attention is with attention weights:

 $\kappa_{\text{att}}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \text{softmax}(\langle W_q \boldsymbol{x}_i, W_k \boldsymbol{x}_j \rangle / \sqrt{d_k}$), *i*, *j* =

where $\kappa_{\text{att}}(\cdot,\cdot)$: $\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ serves as kernel function. Notice

[1] Chen et al. "Primal-Attention: self-attention through asymmetric kernel SVD in primal representation." NeurIPS, 2023.

Prior:
$$
\binom{f}{u} \sim \mathcal{N}\left(0, \begin{bmatrix} K_{XX} & H\Lambda \\ \Lambda H^\top & \Lambda \end{bmatrix}\right)
$$

Posterior: $q(f) = \mathcal{N}\left((H\Lambda)\Lambda^{-1}m_u, K_{XX} - (H\Lambda)\Lambda^{-1}(\Lambda - S_{uu})\Lambda^{-1}(\Lambda H^\top)\right)$

- $H \coloneqq [\boldsymbol{\nu}_1, ..., \boldsymbol{\nu}_s] \in \mathbb{R}^{N \times s}$ contains the eigenvectors to the to eigenvalues of K_{XX} , i.e., $\Lambda = \text{diag}\{\lambda_1, ..., \lambda_s\}$.
- Time complexity of computing posterior is $\mathcal{O}(s)$, $s < N$.
- *shift* and *out-of-distribution* benchmarks.
- Methods in comparison:
	- i) uncertainty estimation baselines implemented into transformers;
	- *ii*) deep kernel learning implemented into transformers;
	- *iii)* Bayesian transformers.
- Rationales behind KEP-SVGP's good performance in
	- i) Distribution-shift robustness: KSVD filters out noisy patterns;
	- ii) OOD detection: KSVD differentiates different eigen spaces.

Background II: KSVD

$$
\langle W_q x_i, W_k x_j \rangle \neq \langle W_q x_j, W_k x_i \rangle \Rightarrow \kappa_{\text{att}}(x_i, x_j) \neq \kappa_{\text{att}}(x_j, x_i),
$$

 $\kappa_{\sf att}$ is asymmetric kernel function^[1]. Output is $o(\pmb x) = \sum_{j=1}^N v\big(\pmb x_j\big) \kappa_{\sf att}(\pmb x, \pmb x_j)$

Patures:

SVGP w.r.t. right singular vectors

 $)\Lambda^{-2}S_{uu}e(X)^{\top})$ $\Sigma^e \coloneqq L^e(L^e)^\top$

SVGP w.r.t. left singular vectors

 $\Lambda^{-2} S_{\bm{u}\bm{u}} r(X)^\top)$ $\Sigma^r := L^r(L^r)^\top$

by the Monte-Carlo sampling: $\mu^r + L^r \epsilon, \quad \epsilon \sim \mathcal{N}(0, I_N).$

catenation: $F^{\text{cat}} := [F^e; F^r] \in \mathbb{R}^{2N}$. ion or concatenation schemes:

output from previous layer

 (b) KEP-SVGP

 $\mathbf{S}=\langle \phi_q(\mathbf{x}_i), \phi_k(\mathbf{x}_j) \rangle$, then the n with KSVD gives^[1]

[2] Suykens. "SVD revisited: A new variational principle, compatible feature maps and nonlinear extensions." *Applied and Computational Harmonic Analysis*, 2016.

Experiments

• Good, robust and efficient performances on *in-distribution*, *distribution-*

Posterior:
$$
f^*|X^*, X, y \sim \mathcal{N}(K_{X^*X}(K_{XX} + \sigma^2 I_N)^{-1}y,
$$

 $K_{X^*X^*} - K_{X^*X}(K_{XX} + \sigma^2 I_N)^{-1}K_{XX^*})$

Time complexity of computing posterior is $O(N^3)$.

Sparse Variational Gaussian Process (SVGP) variationally GP posterior with s inducing variables $\{Z_1, ..., Z_s\} \in \mathcal{X}$, $\boldsymbol{u}[i] = \emptyset$

$$
e(\mathbf{x}) = \sum_{j=1}^{N} \mathbf{h}_{r_j} \kappa_{\text{att}}(\mathbf{x}, \mathbf{x}_j)
$$

$$
r(\mathbf{x}) = \sum_{i=1}^{N} \mathbf{h}_{e_i} \kappa_{\text{att}}(\mathbf{x}_i, \mathbf{x})
$$

 \top $\in \mathbb{R}^{N \times s}$ are column-wisely ention matrix K_{att} .

*Correspondence to: Yingyi Chen (*yingyi.chen@esat.kuleuven.be*)*

European Research Council tablished by the European Commissio

In-distribution data:

Distribution-shift data:

Out-of-distribution detection with AUROC (↑)**:**

