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Summary
Building uncertainty-aware self-attention in Transformers with efficiency:

• Large capacities of Transformers can lead to overconfident predictions, 
risking of safety-critical issues;

• Bayesian inference, a good uncertainty quantification tool, alleviates 
overconfidence by providing predictions with confidence scores;

• We propose a new Bayesian self-attention based on Sparse Variational 
Gaussian Processes (SVGP);

• The time-complexity of our Bayesian self-attention is further reduced to 
! " , " < $ with Kernel Singular Value Decomposition (KSVD).

• Time complexity of computing posterior is ! $! . 

Background I: SVGP
Gaussian Process (GP) represents real-valued function %(⋅):* → ℝ with 
Gaussian distributions based on - ⋅,⋅ :*×* → ℝ, positive-definite kernel: 

Sparse Variational Gaussian Process (SVGP) variationally approximates 
GP posterior with " inducing variables {1", … , 1#} ∈ *, 5 6 = %(1$):
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• Posterior is based on q < = ∫ p < 5 q 5 d5 with variational distribution 

q 5 = > F(, H(( , F( ∈ ℝ#, H(( ∈ ℝ#×#.

• Evidence lower-bound:		ℒ*+,- = M.(0) log	p P < − KL q 5 	| 	p(5))

• Time complexity of computing posterior is ! "! , " < $. 

SVGP with Kernel-Eigen Features reduces time complexity by choosing 
inducing variables as the eigenvectors of @%%, i.e., 5[6] ≔ W$:
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• X ≔ W", … , W# ∈ ℝ3×# contains the eigenvectors to the top-" nonzero 
eigenvalues of @%%, i.e., Λ = diag{[", … , [#}.

• Time complexity of computing posterior is ! " , " < $. 

Background II: KSVD
Self-Attention corresponds to Asymmetric Kernel: let \$ ∈ ℝ4 $5"

3  be the 
inputs, then the queries, keys and values are 

] \$ = 6̂\$,   _ \$ = 7̂\$,   ` \$ = 8̂\$.

The canonical self-attention is with attention weights:
-9::(\$ , \;) = softmax( 6̂\$ , 7̂\; / e7	 ),   6, f = 1,… ,$,

where -9:: ⋅,⋅ : ℝ4×ℝ4 → ℝ serves as kernel function. Notice that in general,

6̂\$ , 7̂\; ≠ 6̂\; , 7̂\$ 	⇒ -9:: \$ , \; ≠ -9:: \; , \$ ,

-9:: is asymmetric kernel function[1]. Output is j(\) = ∑;5"
3 ` \; -9::(\, \;).  

Kernel-Eigen Pair Sparse Variational Process
Pair of Adjoint Eigenfunctions for Self-Attention: the self-attention 
corresponds to a shifted eigenvalue problem[1,2] w.r.t. attention matrix

@9::X< = X=Λ
@9::2 X= = X<Λ

Shifted eigenvalue problem 
w.r.t asymmetric kernel !!"". 

(@9::@9::2 )X= = X=Λ>

(@9::2 @9::)X< = X<Λ>

Eigendecompositions 
w.r.t. symmetric kernels 
!!""!!""# , !!""# !!"".  

Asymmetric…no SVGP Symmetric…two SVGPs

Equiv.

Two SVGPs with adjoint kernel-eigen features:

Prior:
<=

5=
∼ > ?,

@9::@9::2 X=Λ>

Λ>X=2 Λ>

"$
Posterior: 	q <= ≈ >(m n Λ'"F(, m n Λ'>H((m n 2)

Σ$ ≔ %$ %$ #

Prior:
<<

5<
∼ > ?,

@9::2 @9:: X<Λ>

Λ>X<2 Λ>

"%
Posterior: 	q << ≈ >(o n Λ'"F(, o n Λ'>H((o n 2)

Σ% ≔ %% %% #

SVGP w.r.t. right singular vectors

SVGP w.r.t. left singular vectors
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Experiments
• Good, robust and efficient performances on in-distribution, distribution-

shift and out-of-distribution benchmarks.

• Methods in comparison: 

 6) uncertainty estimation baselines implemented into transformers; 

 66) deep kernel learning implemented into transformers; 

 666) Bayesian transformers.

• Rationales behind KEP-SVGP’s good performance in

  6) Distribution-shift robustness: KSVD filters out noisy patterns;

  66) OOD detection: KSVD differentiates different eigen spaces.

Prior: 	% ⋅ ∼ pq 0, - ⋅,⋅ 	⇒ 	< ∼ > ?,@%% , 	 @%%≔ - \$ , \; ∈ ℝ3×3

Posterior:	<∗|n∗, n, P ∼ >(@%∗% @%% + t>u3 '"P, 
                @%∗%∗ −@%∗% @%% + t>u3 '"@%%∗)

Outputs of the two SVGPs are obtained by the Monte-Carlo sampling:
v= = w= + x=y,    y ∼ > 0, u3 ; v< = w< + x<y,    y ∼ > 0, u3 .

Addition:	 v9@@ ≔ v= + v< ∈ ℝ3; Concatenation:	 vA9: ≔ v=; v< ∈ ℝ>3.
Merge two SVGP outputs either by addition or concatenation schemes:

Self-Attention with KSVD: let -9:: \$ , \; = �6 \$ , �7(\;) , then the 
primal-dual representations of self-attention with KSVD gives[1]

where X= ≔ Ä=" , … , Ä=#
2, X< ≔ Ä<" , … , Ä<#

2
∈ ℝ3×# are column-wisely 

the left and right singular vectors of the attention matrix @9::. 
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, Dual:	Ñ
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Out-of-distribution detection with AUROC (↑):


